PROPAGATION OF SOUND IN SUSPENSIONS

V. S. Popov ' UDC 534.2:536.37

The results of papers [1-3] are generalized to include the case of ultrasonic frequencies,

Historically, the theory of sound diffraction by a sphere has been developed for the purpose of deter-
mining its absorption, Dispersion, in the past, has attracted considerably less attention, Papers [1-3],
published recently, show the increasing interest toward this subject.

The relaxation theory used in [1-3] requires a precise calculation of the reactions of particles on the
oscillations of the surrounding medium, The force acting on a particle in a sonic field has been found al-
ready by Stokes [4]. Our interest will be focussed on the investigation of temperature effects.

First of all, from calculation of the diffraction of a plane sound wave at a sphere [5, 6] by the proce-
dure in [7], the thermal dispersion of sound ig investigated in emulsions with constituents which have similar
mechanical properties, The results obtained, taking account of thermal conductivity inside each constituent,
are systematized on the basis of the function F, well known in the literature [5]. The average laws of con-
servation of the mixture are then written on the assumption that the effects of viscosity and thermal con-
ductivity are important only in phase interaction processes, and on this basis the acoustic properties of
various hydro~ and gas-mixtures are studied. ’

Comparison of the results from both cases allows the general frequency relation to be established for
the coefficient of damping and the velocity of sound for suspensions of very different nature and also esti-
mates the effect which is introduced by thermal conductivity inside each of the constituents individually.

1, We consider a plane compression wave incident on a spherical surface of radius R, We ghall as~
sume that the particle size is much less than the wavelength of the primary wave., We shall use the spheri-
cal coordinates r, ¢, and y to represent the field, taking the origin at the center of the sphere and the polar
axis in the direction of propagation of the incident wave, We express the potential of the latter ¢, = exp
(ikrcosd) in the usual way*

o= @+ 1), (k) Py (cos ).

n=0

Because of the presence of the sphere, six secondary waves originate: three in the primary medium
~— compression wave ¢, temperature wave &, and viscous wave A ~ and three inside the particle, The
velocity resulting from the field scattered by the droplet can always be represented by the expression

u = grad (¢, + @) + rot A.

In view of the axial symmetry, of the projections A,, Ay, and Azp the first two are equal to zero and it
only remains to consider A¢ =A,

The potentials ¢., &, and A will be found in the form

£

9, = 2 i* (2n - 1) Ak, (kr) P, (cos §),

n=0

*Here, and in future, we shall omit the time-dependent factor exp(—iwt),

Power Institute, Siberian Branch, Academy of Sciences of the USSR, Irkutsk,  Translated from In-
zhenerno-Fizicheskii Zhurnal, Vol, 19, No, 2, pp.297-304, August, 1970, Original article submitted August
25, 1969,

© 1973 Consultants Burean, o division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

1004



]
\
/
z
A\ as
94 N
0 4 é 12 1 a Q4 98 1z q
Fig.1 Fig.2

Fig.1, Relative absorption of sound: 1) emulsion of benzene in water;
2) emulsion of water in benzene,

Fig,2. Comparison of values of 8*A /&) (emulsion of water in benzene),
calculated using the equations; 1) (5); 2) (9); 3) (7); and 4) (8),

O = 2 i* (2n 4 1) B, h, (Kr) P, (cos ),

n=0

A= ¥ i"(2n +1)Cih, (wr) Py (cos 9).
=0

Similarly, for the interior of the sphere

@

¢ = ¥ i"@n+ 1) A, ], (k'r) P, (cos®),

n=0

© = N in@n 4 1) B j, (K') P, (cos ),

n=0
A = 2 i"(2n 4 1) Cy j, (x'r) Pk (cos 9).
n=0
Here, jy, by, Py, and P}, are spherical functions of Bessel and Hankel, and Legendre functions and adjoint
Legendre functions,

The boundary conditions at the surface of the droplet have the form

, .
U =, dg=uy, T=T,

, , oT , OT"
Prr:Prrv Pn‘}zpr\‘)v }"3;‘:;" or

Substituting here the general expressions for ¢, ®, ..., A', we find the unknown coefficients Ay, .. .,
Cp. As only the potentials of the sonic field are unknown, the various physical values can be calculated,

We note that in the boundary conditions for the number n = 0, there is no potential of the viscous wave.
This circumstance permits the use of light suspensions by the procedure in [7] for investigating dispersion
of the velocity of sound,

We introduce the complex wave number

into the calculation and we find the compression s at every point of space from the equation of state for the
component
s=Pfp—al, s =§p—a'T".

We determine the average compression s by the formula:
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We know the spatial temperature distribution for each of the components from the calculation of the dif-
fraction of waves at a sphere,

A progressive calculation gives for the wave number

E 4 i6* = o+ i—— e AT (~9—— i \)F‘l. 1)
2R PeCs  PoCp
Hence
P U IR i Im (7 ,
q qm[1+4so(v I)T)Zﬁ?u_;)z " ] (2)
o= S op— 1L e o gp R @
o ¢ n
where
l
)
q“—{ ’:SOL"I'(I_SO) ﬁ” ; (4
hy(KR) jy(K'R) (5)

= KRn,(KR) ~ *K'Rj,(K'R)

Conversion from spherical functions in expression (5) to hyperbolic functions gives, for n >» 1,

, n
Fl=(1—1i e — (6)
( ) 1 +VXPDCP/P(; c;

For low frequencies (n <« 1), we have from Eq, (5)

— 4n? { 3 pOC 1
Fle —— (140202 —i— J (7
9 (0 »/PoCp ¥ ( 2 PO Cp

Relations (1)to (7) are identical with the corresponding computations of M, A, Isakovich {7].

It is difficult to evaluate the real and imaginary parts of the general formula (5) and therefore the
natural tendency of the author of [6] was to a presentation F, which although simple should include at the
same time the maximum possible range of frequencies,

If expression (5) is rewritten in a power sequence, as in [6], then we obtain*

F=1—n+0.2x+i[n+2n2+x( +-2o j] (8

The limits of applicability of Eq, (8) are somewhat wider than for Eq. (7).
A gignificant displacement gives the following expression

4 ! 6
Re (F-1) — {40*[14- 0.2y + (1 + 0.49) nl + 1.6yn) X (9)

141 4+ 0.4t 12 Poly n3+9( Pily_ )(1 +2n+2n2)+1.6)m5}
C

0 » 90 Cp

{ [411 +6 Pifp (1+2n+2n2>]}

PO Cﬂ

(10)

Im(F )= — .
{4(1+0--4x)n4+ 12 %’_CL -9 ( M) (1+2n+2n2)+1,6xn"’}

0 Cp Polp

The results of the calculations are given in Figs.1 and 2,

*The similar formula in {6] is written incorrectly,
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2. In the case of heavy suspensions, it is necessary to take account of viscosity, The system of equa-
tions describing the acoustic process in a mixture with rigid particles has the form [3]:

0 ou
“5?[(1—30)9—905] +(1 —_80)()05; =0,

Ot ou’
— t gy —— =0,
ot T Ox
0 . dp
—67[(1”80)90”"%‘8090“]:“7){,
a ., (11)
|4 ~(i’(pou' -Pou) = FpY

a 7’ ’ 4 !
E‘“ [(1—¢) PocpT +- €00, CpT — (I —¢gg)aTopl =0,
Vv 9 (o T T
“a‘t—(Pon —0pT) = Q>
—FL:ﬁp—aT.
Qo

Here Fy, is the reaction encountered by the particles during motion relative to the medium, The latter was

calculated by Stokes [4] and, for harmonic oscillations of the medium u ~ exp(—iwt), has the form

\

F, = (——%pi i® —]—6anL—~6nR2V———impop)(u——u’). (12)
For a known acoustic field (Section 1), it is not difficult to estimate the quantity Qp:

Q, = (_,ﬂ’éoﬁp_ i + 4aRh — 4aR2 Y = Topy )(T—T’). (13)

The second and third terms of formula (13) represent the amount of heat transferred per unit time
from the medium to the particle; they are the results of evaluating the expression 4TRZA(8T/ 8r)'r=R'

The coefficient Vpocp/z for the derivative (3/8t)(T —T") in the first term is not the same as the specific
heat of the "combined” mass,

Assuming that the independent variables in system (11) are proportional to exp[ikx—wt)], we obtaint

EZ . (1 - 80) ﬁp.ef

Lo , (14)
o Vef
where
1+ 130 58,
- &,
Pot = g —— a5)
1+ ' B,
1—eg,
e+t 8By
— &,
Tof = .- i (16)
C
oy + ey pH
_ 2
; 1+§——L§(1+—3“E)
an‘;”: i : 5 , (17)
g —ig |1 (4 20)¢]
T 1 4-n—in(
BL=?Z +1 117]( L)) ~ . (18)
1+n~—in{l+——(l+26mp_)n]
3 ¢y

fHaving used the case, we note that in [3] all computations are carried out for the relation f = f*expli(wt
~kx)], and in symbols 7, = (2/9)omr?/W).
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Fig.3. Absorption of sound §* dB/m, by water droplets in air: 1) total,
formulas (20), (21), and (22); 2) viscous, formula (21); 3) thermal, for-
mula (22); 4) total, formulas 20), (23), and (24),

Fig.4, Calculation of the dispersion of the velocity of sound. 1,2) Emul-
sion of mercury in water, formulas (19), (21), 22), and (19), 23), and 24);
3) suspension of aluminum particles in air,

The asymptotic estimates for the velocity of sound follow from Eqs, (14)-(18)
1

G = [(—1:?_&)_55&]—7 ,

0 =

Yo .
- {—e)Bpe | 2
G = [ ( JBp ] ,
Y
where
€ ,
c S¢c
- » 1—eg 7
’YO = € )
cy + 0 (56';
—e
(1}

and for p,, under the conditions of {1, 3] we have

S SR 2

P Po bo

("parallel coupling® for densities), A more rigorous estimate for p. can be obtained from Egs, (15) and
(17). We congider rarefied systems in which the density p,, is almost equal to the density of the containing

medium p,,

Agsuming that dispersion is small, we find from Egs, (14)-(18)

1 1 1 gB—1) 1 go (v — 1) 8cp v }
2o L B0 ReB,—1)+ — : - Re(B,—1)|, 1
7 @ 1[ T e 2 o Teden) v +epz) oerT D (19
o [ 1 g@—1) 1 eo(y— 1) 8cpey ]
o= 50T ynp L CAY — Im(B,—1)]. (20)
% [2 14 e (8—1) B —1) 2 (cp -+ 88¢h) (ov + &,8¢,) (Br=1)
Here,
S 1+—2—~<1+2a)§]+ii<a—l)§2<1+§)
g9 T 9 . (21)
— p—t 2 2 ?
’ (98| 1 20
—1‘5iﬂ3’-1+L(1+25—C&>ﬂ]+i—2"5in2(1+7|)
B,—1= 3 6 1 3 ‘p 3¢ ) (22)

1 ’ 2
(1+m2 2 [1+§~(1+2a —ﬁ-)nj

P
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For small values of £, n and 6 > 1, Egs, (21) and (22) convert to the corresponding formulas of paper

13]:
4 \? .4 \
—(—9 )5(‘5——1)2 +t—9 8—1E&

Bu'—-l’: 1 4 6254 3 (23)

(% )

2 e \? 2 ¢
(e furige e
] = 2 p . 24)
B,—1 A, (
1+(—a_n_ 3
LR 6

The change 6* in the function £(n = Pr!/%) for a suspension of water droplets in air is shown in Fig.3,
It is assumed for the calculation that R = 5:107% m, q = 344 m/sec and €, = 107%, &* increases monotonical~
ly with increase of £ at first proportional to £4 and then, after inflexion, to & Thislatter circumstance fol-
lows on taking account of the inertial terms (terms which are frequency-dependent) in formulas (12) and (13).
Without taking account of the latter (see [1-3]), at high frequencies we should have 6* = const (curve 4, Fig.
3).

Analysis of the dispersion of sound shows that in the case of a gas suspension (6 > 1, 6(cb/cp) > 1)
the inertial terms do not carry any significant correction to the velocity of sound, The dispersion curves,
calculated using formulas (21) and (22) and the simplified formulas (23) and (24), are plotted one on the other
(curve 3, Fig.4).

We observe a different pattern when considering a hydrosuspension, For example, let us take an emul-
sion of mercury in water, Starting at approximately £ = 0,3, curves 1 and 2 (Fig.4) diverge so strongly that
there can be no question of using formulas (23) and 24), :

In conclusion we note that in the formulation of system (11), we have neglected thermal conductivity
inside each of the phases individually, This effect of conductivity has a clearly defined form and is repre-
sented in Eq, (9) and (10) by the terms containing X, When x— 0, it vanishes and

Frles—i 2§ % B
3 €y
The results of the theory discussed are used over a whole range of frequencies, including high ultra-
sonic frequencies and they are found to coincide with the experimental and calculated data of [2, 5, 8, 11-15],

NOTATION

o is the coefficient of thermal conductivity (thermal diffusivity);
q is the velocity of sound;
€ys Cy arethe specific heatsat constant pressure and constant volume;
ke 0/, K = (1 + Dw/20)1/2,

and % = (1 + i)w/2v)1/2 are the wave numbers of the acoustic, thermal, and viscous waves;
p is the acoustic pressure;
Py i is the stress tensor;
R is the radius of particle;
t is the time;
T is the temperature;
u is the velocity;
v is the volume of particle; volume occupied by a component;
o is the coefficient of volume expansion;
B is the isothermal coefficient of compressibility;
Y = cp/ v is the ratio of specific heats;
8 = py/py is the ratio of densities;
5% is the coefficient of absorption;
€ is the volume concentration;
= u'/a)(pQCp/pocp),
n = WRY/20)1/2,
£ = wR?/2v)1/2,
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X =A/A'  are parameters;

is the coefficient of thermal conductivity and wavelength;
are the dynamic and kinematic viscosities;

is the density;

is the angular frequency;

is the Prandtl number;

Subscripts

° .

° L] °

CD\'IUACN'H;WNH

S
N = O
g S

=
[S1N
o °

1010

is the unperturbed value of a quantity; value of a quantity at low frequencies;
is the value of a quantity at high frequencies;

is the average with respect to volume of mixtures;

is the value of a quantity for the suspended phase,
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